

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583

Rumartin Magar, Marayana vananin Koad 51750

QUESTION BANK (DESCRIPTIVE)

Subject with Code : FM(15A01305)

Year & Sem: II-B.Tech & I-Sem

Course & Branch: B.Tech - CE **Regulation:** R15

<u>UNIT – V</u>

Analysis of Pipe Flow and Laminar and Turbulent Flow in Pipes

1.	Two parallel plates kept 75 mm a part have laminar flow of glycerine between them with a	ι
	maximum velocity of 1 m/s. Calculate the discharge per metre width, the shear stress at the	e
	plates, the difference in pressure gradients at the plates and velocity at 15 mm from the	
	plates. Take viscosity of glycerine as 8.35 poise.	10M
2.	a) A shaft of 100 mm diameter rotates at 60 rpm in a 200 mm long bearing. Taking that the	
	two surfaces are uniformly separated by a distance of 0.5 mm and taking linear velocity	
	distribution in the lubricating oil having dynamic viscosity of 4 centipoises, find the	
	power absorbed in the bearing.	5M
	b) A shaft 100 mm diameter runs in a bearing of 200 mm with a radial clearance of 0.025	
	mm at 30 rpm. Find the velocity of the oil, if the power required to overcome the viscous	
	resistance is 183.94 watts.	5M
3.	Using Hagen-poiseuille formula, derive an expression for the head loss in a pipe of	
	diameter D and length L in terms of Reynolds number and velocity head.	10M
4.	A pipe of diameter 20 cm and length 10^4 m is laid at a speed of 1 in 200. An oil of specific	2
	gravity 0.9 and viscosity 1.5 poise is pumped up at the rate of 20 lit/s. Find the head lost	
	due to friction. Also calculate the power required to pump the oil.	10M
5.	Determine the wall shearing stress in a pipe of diameter 100 mm which carries water. The	
	velocities at the pipe center and 30 mm, from the pipe center are 2 m/s and 1.5 m/s	
	respectively. The flow in pipe is given as turbulent.	10M
6.	Find the head lost due to friction in a pipe of diameter 300 mm and 50 m, through which	
	water is flowing at a velocity of 3 m/sec using (i) Darcy's formula (ii) Chezy's formula	
	for which C=60.	10M
7.	At a sudden enlargement of a water main from 240 mm to 280 mm diameter, the hydraulic	
	gradient rises by 10 mm. Estimate the rate of flow.	10M
Na	me of the Subject Pa	ge 1

		QUESTION BANK	2016
8.	Derive the expression for loss of head due to friction in pipes.		10 M
9.	Derive the expression for loss of head due to sudden enlargement.		10M
10. a) Define Hydraulic gradient line and total energy line.			2M
	b) List out the different minor loss of energy.		2M
	c) Derive Darcy-weisbach equation.		2M
	d) Define laminar and turbulent flow with Reynold's number.		2M
	e) What are the loss of head at entrance and exit of pipe?		2M

Prepared by: M. Muzaffar Ahmed and Y. Guru Prasad.

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : FM (15A01305)

Course & Branch: B.Tech - CE

Year & Sem: II-B.Tech & I-Sem

Regulation: R15

<u>UNIT – V</u>

Analysis of Pipe Flow and Laminar and Turbulent Flow in Pipes

1. A flow is said to be laminar

A) The fluid particles are move in zig-zag way

B) The Reynolds number is high

Name of the Subject

Page 1

]

[

QUESTION BANI	<	2016			
C) The fluid particles are move parallel to the layer D) None of the above					
2. For a laminar flow through a circular pipes	[]			
A) The maximum velocity = 1.5 times of average velocity					
B) The maximum valocity = 2.0 time the average velocity					
C) The maximum valocity = 2.0 time the average velocity					
D) None of the above					
3. The loss of pressure head for the laminar flow through pipes varies	[]			
A) As the square of velocity B) Directly as the velocity					
C) As the inverse of velocity D) None of the above					
4. For the laminarflow through a pipe, the shear stress over the cross-section	[]			
A) Varies inversly as the distance from the centre of pipe					
B) Varies directly as the distance from the surface of pipe					
C) Varies directly as the distance from the centre of the pipe					
D) Remains constant over the cross-section					
5. The velocity distribution in laminar flow through a circular pipe follow the	[]			
A) Parabolic law B) Linear law C) Logathemic law D) None of the	e ab	ove			
6. Head loss in turbulent flow in pipe varies directly as the	[]			
A) Square root of velocity B) Velocity C) Square of velovity D) Cub	oe o	f velocity			
7. Velocity of fluid particles at the centre of pipe section is	[]			
A) Maximum B) Minimum C) Average D) r.m.s					
8. Tranquil flow must always occurs	[]			
A) At normal depth B) Above the normal depth C) Below normaldepth D) Above	crit	ical depth			
9. In laminar flow	[]			
A) Experiment is required for the simplest flow case B) Newton's law of viscosity	is aj	pplied			
C) Flow particles move in irregular path D) Viscosity of unimportant					
10. For pipe flow, at constant diameter, head is proportional to	[]			
A) Flow B) $(Flow)^2$ C) $(flow)^3$ D) $(Flow)^{-1}$					
11. The shear stress in a turbulent pipe is	[]			
A) Varies parabolically with radius B) Is constant over the pipe radius					
C) Varies ccording to 1/7 the power law D) Is zero at centre and increased linea	rly	to the wall			
12. The pipe bend causing maximum hesd loss is	[]			
A) 30° bend B) 45° bend C) 60° bend D) 90° bend					
13. For pipes, laminar flow occurs when the Reynolds number is	[]			
Name of the Subject		Page 1			

QUESTION BANK 2016						
A) Less than 2000 B) Between 2000 and 4000 C) More than 2000 D) More than 4000						
14. Whaen a fluid flows in concentric circles, it is known as []						
A) Free circulation motion B) Free rotational motion C) Free sriral motion D) None of above						
15. Seperation is caused by []						
A) Reduction of pressure to vapour pressure B) Reduction of pressure gradient to zero						
C) An adverse pressure gradient D) The boundary layer thickness is reducing to zero						
16. Pressure gradient in laminar motion along the flow directional is equal to []						
A) Velocity gradient B) Rate of change of velocity normal to the direction of flow						
C) Surface tension cannot be neglected D) Surface tension be neglected						
17. In laminar flow through a roundtube, the discharge varies []						
A) Linearly as the viscosity B) Inversely as the pressure drop						
C) Linearly as the cube of the diameter D) Invesely as the viscosity						
18. Friction factor for pipes deponds on []						
A) Rate of flow & density B) Viscosity C) Pipe roughness D) All the above						
19. An ideal fluid is						
A) Similarly to the perfect gas B) Frictionless and incompressible						
C) Obey Newtons law of viscosity D) Satisfies continity equation						
20. For transition flow, the Reynolds number varies []						
A) Less than 2000 B) More than 4000 C) Between 2000 & 4000 D) Less than 4000						
21. The frictional head loss in a turbulent flow through a pipe varies []						
A) Directly as the average velocity.						
B) Directly as the square of the average velocity.						
C) Inversely as the square of the average velocity.						
D) Inversely as the square of the internal diameter of the pipe.						
22. The pressure drop in a pipe flow is directly proportional to the mean velocity. It can be deduced						
that the []						
A) Flow is laminar B) Flow is turbulent C) Pipe is smooth D) Pipe is rough						
23. Two pipes systems can be said to be equivalent, when the quantities same are []						
A) Frictionless loss and flow B) Length and diameter C) Flow and length D) Length and flow						
24. In pipe larger than 25 mm, carrying water, the laminer flow is						
A) Very often exist B) Generally exist C) Rarely exist D) Unpredictable						
A) Maximum attainable velocity B) Terminal velocity						
C) Velocity when hydraulic jump isoccurs D) velocity above which flow ceases to be strean line						
Name of the Subject Date 1						

		QUESTIC	ON BANK 2016			
26. The stress-strain relation of the Newtoneon fluid is						
A) Linear B) Pa	rabolic C) Hy	perbola D) Inerse typ	e			
27. In a turbulent flow	, , , , , , , , , , , , , , , , , , ,		[]			
A) Flow particles flow in an ord	lerly manner B	3) Momentum transfer	is on a molecular only			
C) Shear stress is larger than in	similar laminar flow	D) None of the above				
28. Rain drops are spherical in shap	e because of		[]			
A) Viscosity B) Air resista	ance C) At	mospheric pressure	D) Surface tension			
29. Which of the following forces c	loes not acts in case of	fluids	[]			
A) Centrifugal force	B) Tensile force	C) Vibratory force	D) Elastic force			
30. Prandt's mixing length hypothe	sis is based on		[]			
A) Eddy viscosity	B) Momentu	m exchange that occur	due to random motion			
C) Similarity of turbulent flow	Datren D) None of the	he above				
31. The Darcy-Weisbach equation	For loss of head is		[]			
A) 4.f.L. $V^{2}/2g.d$	B) f.L.V ² /2g.d	C) 4.L.V ² /2g.d	D) 4.f.L. $V^2/2g$.			
32. The Chezy's formula is			[]			
A) V=C \sqrt{m}	B) V= \sqrt{mi}	C) V=C \sqrt{mi}	D) V=C \sqrt{i}			
33. The formula for Reynolds numl	ber is	, .	[]			
A) Vd/µ	B) ρV/μ	C) pVd	D) ρVd/μ			
	·					
34. The loss of head due to sudden	enlargement is		[]			
A) $(V_1 - V_2)/2g$	B) $(V_1 - V_2)^2 / 2g$	C) $(V_1 - V_2)^2/g$	D) $(V_1 - V_2)^2 / 2$			
35. The loss of head at the exist of t	he pipe is		[]			
A) 1.0 x $V^2/2g$	B) $2.5 \times V^2/2g$	C) $0.5 \ge V^2/2g$	D) 1.5 x $V^2/2g$			
36. The loss of head at the entrance	of the pipe is		[]			
A) 1.0 x $V^2/2g$	B) $2.5 \times V^2/2g$	C) $0.5 \ge V^2/2g$	D) 1.5 x $V^2/2g$			
37. Hydraulic grade line for any flo	w system as compared	to energy line is	[]			
A) Above	B) Below	C) At same level	D) Uncertain			
38. Total energy line for any flow sy	stem as compared to H	Hydraulic grade line is	[]			
A) Above	B) Below	C) At same level	D) Uncertain			
39. Flow through branched pipes ca	in be solved by the foll	owing equations	[]			
A) Continuity equation B) Bernoull's equation C) Darcy-Weisbach equation D) All the above						
40. Which one of the following statements is appropriate for the free surface, the hydraulic gradient						
line and energy gradient line in	an open channel flow		[]			
A) Parallel to each other but they are different lines B) All coinciding						
C) Such that only the first two c	coincide D) Such that they are all	inclined to each Other			

Name of the Subject

Prepared by: M. Muzaffar Ahmed and Y. Guru Prasad